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(a) virtual world floor plan, size 33m× 21m (b) real world floor plan, size 10m× 5.8m (c) lab setup, for the real world in (b)

(d) virtual world view (e) user’s HMD view

Figure 1: Overview of our system. (a) and (b) are aerial views of the virtual and physical worlds, with their dimensions in meters. Typically, (a) is much

larger than (b). The goal is to enable the user to walk freely in (b) while experiencing (a) using a head-mounted display (HMD). Our system first computes a

planar map between (a) and (b), with the mapped user walking paths overlaid in green gradients. (c) is a photograph of the lab setup, including the equipment

and surroundings. Our system then renders the virtual world appearance (d) for the user’s HMD view (e) in a way that is compatible with the real world

geometry, so that the user can faithfully see the former and comfortably navigate the latter. Note that even though the user’s view is entirely blocked by the

HMD, our system guides the user away from boundaries and obstacles such as the walls and furniture. (Scene in (a) is courtesy of Counter Strike, Italy.)

Abstract

Real walking offers higher immersive presence for virtual real-
ity (VR) applications than alternative locomotive means such as
walking-in-place and external control gadgets, but needs to take
into consideration different room sizes, wall shapes, and surround-
ing objects in the virtual and real worlds. Despite perceptual study
of impossible spaces and redirected walking, there are no general
methods to match a given pair of virtual and real scenes.

We propose a system to match a given pair of virtual and physical
worlds for immersive VR navigation. We first compute a planar
map between the virtual and physical floor plans that minimizes
angular and distal distortions while conforming to the virtual envi-
ronment goals and physical environment constraints. Our key idea
is to design maps that are globally surjective to allow proper fold-
ing of large virtual scenes into smaller real scenes but locally in-
jective to avoid locomotion ambiguity and intersecting virtual ob-
jects. From these maps we derive altered rendering to guide user
navigation within the physical environment while retaining visual
fidelity to the virtual environment. Our key idea is to properly warp
the virtual world appearance into real world geometry with suffi-
cient quality and performance. We evaluate our method through a
formative user study, and demonstrate applications in gaming, ar-
chitecture walkthrough, and medical imaging.

Keywords: virtual reality, head-mounted display, redirected walk-
ing, warped space, planar map, geometry morphing, camera projec-
tion, real-time rendering, human perception

Concepts: •Computing methodologies → Virtual reality;

1 Introduction

With the confluence of virtual reality (VR) hardware and software
developments, a variety of devices and setups are now offering dif-
ferent costs, features, and capabilities. Ideally, a VR environment
should facilitate full immersion and natural movement. Current de-
vices such as projected rooms (CAVEs) and head mounted displays
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(HMDs) can provide realistic rendering, but often require users to
remain stationary or walk within a limited area due to hardware lim-
itations (e.g., CAVE space or HMD cables) or navigation concerns
(e.g., real environments not visible through HMD). Users thus need
to employ less natural means such as gamepads and walk-in-place
devices to control their movements, which can negatively impact
their sense of presence compared with natural interaction [Witmer
and Singer 1998] and real walking [Usoh et al. 1999].

Combining realistic VR displays and real walking has the poten-
tial for immersive presence and natural interaction. Free walking
is already viable on the hardware side, as upcoming HMDs are
equipped with low cost motion trackers (e.g., $799 for HTC Vive
including motion trackers compared to $52000 for OptiTrack mo-
tion capture). However, virtual and real worlds often differ signifi-
cantly in sizes, shapes, and objects. Thus, proper mapping between
the two is needed to offer a believable presence in the virtual world
and feasible navigation in the real world (e.g., users remain per-
ceptually comfortable and without bumping into objects). Devising
such mapping remains an important open problem in VR display
and navigation.

Techniques such as redirected locomotion [Razzaque et al. 2002;
Hodgson et al. 2008], distorted space [Suma et al. 2012; Vasylevska
et al. 2013], and physical props [Cheng et al. 2015] have shown
promise for bridging the gap between virtual and real scenes. Be-
havioral studies, such as [Steinicke et al. 2008; Nilsson et al. 2014;
Bruder et al. 2015], have indicated the possibility of navigating
a large-scale virtual environment while physically remaining in a
reasonably small real space. However, those existing methods use
procedurally generated content for feasibility studies, but do not
provide general methods to map between a given pair of virtual and
real environments. Since the virtual environment (e.g., a game or an
architectural design) is usually orthogonal to the physical environ-
ment (which varies depending on the end users), a general method
to bridge the two is crucial for real VR walkthrough.

We propose a VR method to maximize presence in a given vir-
tual world and facilitate real walking in a given physical world.
Within the scope of this paper we represent both worlds as planar
floor plans, and use an HMD (Oculus DK2) attached to a notebook
computer as the VR device to allow free navigation. Our method
faithfully renders the virtual world inside the HMD but alters the
camera projection for navigating the real environment, so that users
can retain perceptual comfort while being guided to stay within the
boundary walls and away from obstacles such as furniture. Figure 1
is an overview of our system and the user experience.

Our method consists of two key components: a planar map between
virtual and real world floor plans, and a camera projection derived
from the planar map and scene content. The planar map aims to pre-
serve both angle and distance between the virtual and real worlds
for visual and locomotive consistence. The camera rendering aims
to preserve the virtual world appearance and the real world geom-
etry, while guiding user navigation to avoid physical obstacles and
vestibular discomfort.

Both planar maps [Poranne and Lipman 2014; Fu et al. 2015; Chen
and Weber 2015] and projective rendering [McMillan 1997; Yang
et al. 2011; Popescu et al. 2009] have been extensively studied in
computer graphics. However, our VR method has different require-
ments from these prior art. Prior planar maps often require bijec-
tivity to avoid folds, but our method does not require bijectivity as
it looks for proper folding of the virtual world into the real one.
We instead optimize for maps that can preserve angle and distance
and can be efficiently computed for VR navigation. Prior projective
rendering methods focus on speed and realism. In addition to that,
our method also relies on the projection to properly guide user lo-
comotion and hide perceptual discrepancies between the virtual and

real worlds. We thus derive our camera projection according to the
planar map and scene content to balance between visual realism,
geometric consistency, and perceptual comfort.

Our method allows users to wear wireless HMDs to navigate virtual
scenes via free locomotion in real worlds. We evaluate our system
through a formative user study and applications in gaming, archi-
tecture walkthrough, and medical imaging.

In summary, the main contributions of this paper include:

• An HMD-VR system that allows real walking in a given phys-
ical environment while perceiving a given virtual environ-
ment;

• A custom planar map that is globally surjective but locally
injective between the virtual and physical floorplans to mini-
mize angular and distal distortions for walkthroughs;

• Optimization methods to compute the aforementioned planar
maps as two parts: a static forward map that minimizes angu-
lar and distal distortions while avoiding obstacles and bound-
aries, and a dynamic inverse map that guides natural locomo-
tion and resolves local ambiguities;

• A rendering method that preserves the virtual world appear-
ance while observes the physical world geometry to balance
between visual fidelity and navigation comfort.

2 Previous Work

Immersive virtual environments There are various forms of
immersive virtual environments. Some, such as rooms or cabins
(CAVEs), offer semi-immersive experiences in which users can see
virtual worlds projected on physical displays. Others, such as head
mounted displays (HMDs), have more compact setup and fuller im-
mersion than CAVEs, and have gained recent popularity due to im-
provement in hardware and software (see e.g., [Huang et al. 2015;
Li et al. 2015]). However, users’ immersive experiences depend
on not only rendering/display performance but also interaction and
navigation capabilities. HMDs can block perception of the sur-
rounding real world with negative impacts on user interaction and
navigation, such as hand motion [Jang et al. 2015], obstacle avoid-
ance, and walking direction. Walking-in-place (WIP) techniques,
such as omni-directional treadmills [Souman et al. 2008], robot tiles
[Iwata et al. 2006], and motion carpets [Schwaiger et al. 2007], can
reduce some of these issues, but have yet to gain popularity due to
barriers in hardware and usability (see e.g., [Wong 2015]).

Real walking Studies have shown that real walking outperforms
walking-in-place and other indirect means of VR navigation [Usoh
et al. 1999]. However, real walking requires sufficiently large phys-
ical spaces, which are almost always in different (usually smaller)
sizes and shapes from the corresponding virtual spaces (unless the
latter are designed from the former, as in [Simeone et al. 2015]).
Techniques such as physical props [Cheng et al. 2015], warped
spaces [Suma et al. 2012; Vasylevska et al. 2013], and redirected
walking [Razzaque et al. 2001; Maesen et al. 2013; Zmuda et al.
2013; Nescher et al. 2014] have been proposed to reconcile the vir-
tual and physical worlds, and behavior studies have indicated that
limited amounts of space distortion can be acceptable for VR nav-
igation [Steinicke et al. 2008; Zhang and Kuhl 2013; Nilsson et al.
2014; Bruder et al. 2015]. However, existing methods are not gen-
eral enough to map between a given pair of virtual and physical
environments. Our paper aims to address this important problem.

Planar mapping Various planar mapping methods have been
proposed to achieve application-specific goals such as minimiz-



(a) virtual scene 200× 200 (b) real scene 60× 100 (c) real scene 70× 70 (d) 60× 100 + obstacle (e) 60× 100 non-rectangular

Figure 2: Static mapping examples. (a): original input virtual scene overlaid with the user paths. (b) and (c): map to real spaces with different sizes and

shapes. (d) and (e): map to real spaces with interior obstacles within and adjacent to the boundaries. (Scenes courtesy from top to bottom: Counter Strike

Italy, Counter Strike office, and Venice.) Additional detailed information are in Section 6 and Figure 11.

ing distortion and avoiding folding (see e.g., [Poranne and Lipman
2014; Fu et al. 2015; Chen and Weber 2015] and the references
therein). Our system also relies on planar mapping, but has needs
beyond existing methods. For example, sparse constrained defor-
mation [Schüller et al. 2013] and convex SOCP optimization [Po-
ranne and Lipman 2014] are not suitable for our problem, and we
need local isometry for geodesics rather than global isometry for
distance-preserving. Moreover, most traditional planar mapping
and deformation applications are based on user manipulation. In
our application, the output domain is pre-defined by the real space.
We thus propose a custom planar mapping with application-specific
objectives, constraints, and solvers.

Re-projective rendering Re-projective rendering has a long
history in computer graphics, including image-based rendering
[McMillan 1997], general camera models [Popescu et al. 2009],
and shading reuse for acceleration [Yang et al. 2011]. Our sys-
tem also uses re-projective rendering for HMDs, but faces a unique
challenge: combining the appearance of the virtual world and the
geometry of the physical world to strike the right balance between
visual fidelity and navigation comfort. We thus propose a custom
re-projective rendering method to address this challenge.

3 Method

Given the 2D floor plans for the virtual Sv and real Sr scenes, we
first compute a static forward map f from Sv to Sr (Section 3.1).
This map is surjective but not bijective in general when Sv > Sr ,
but should minimize both distance and angle distortion for VR
walkthroughs. It should reach every point in both Sv and Sr , while

keeping inside Sr and away from interior obstacles. Folding is in-
troduced without tearing or breaking apart the virtual world.

At run time during user navigation, we compute a dynamic reverse
map of f to determine the virtual location in Sv from the tracked
user position in Sr (Section 3.2). This reverse map should be con-
sistent with the forward map f while maintaining motion and per-
ception consistency for the users.

Finally, we render the virtual scene into the HMD (Section 3.3).
The rendering should have enough quality and speed, and fit the
appearance of the virtual scene into the geometry of the real scene
to balance between visual and motion fidelity.

3.1 Static Forward Mapping

In this step, we surjectivly map each virtual scene pixel x =
(x, y) ∈ Sv to a real scene point u = (u, v) ∈ Sr , where Sv and
Sr represent 2D planar regions. Unlike most prior 2D planar map-
ping methods, our application does not require global bijectivity to
allow proper folding of large virtual scenes into small real scenes.
Instead, our map relies more on conformality and isometry to min-
imize angular and distal distortion during VR navigation. Figure 2
shows mapping examples with different inputs and outputs.

Inputs and outputs Both the virtual Sv and real Sr scenes are
represented by planar 2D regions bounded by their external and in-
ternal boundaries (for domain shapes and obstacle regions, respec-
tively). For computational purposes, we represent both spaces as
polygonal shapes. In practice, those polygons can be extracted as
convex/non-convex hulls from scanned data or design figures.



Representation Similar to prior meshless warping and planar
mapping methods [Poranne and Lipman 2014; Chen and Weber
2015], our method also adopts a basis-function form to facilitate
analytical computation of Jacobians and Hessians:

(u(x, y), v(x, y)) = u = f(x) =

p
∑

i=1

cibi(x) +Tx, (1)

where {bi} are basis functions with weights {ci}, and T is an
affine transformation matrix. We use Gaussians for b, i.e.,

bi(x) = e
−|x−xi|

2

2s2 , (2)

where xi is the i-th basis center (blue points in Figure 3) and x

is a sample point in Sv (green points in Figure 3). In our experi-
ments, we perform stratified sampling with each stratum containing
0.025% pixels of Sv and set s as 5× the average sample distance.

Figure 3: Stratified sampling example for part of the Italy scene floor plan.

Goal The general goal is to find proper c = {ci} and T so that
the mapping f is as globally conformal and locally isometric as
possible. In general, Sv is larger than Sr . To allow folding Sv

into Sr , f should be surjective but not necessarily bijective which
is the goal of most of other planar mapping methods. Such folding
will also prevent f from being globally-isometric. Thus, we target
our ideal mapping as globally conformal but locally isometric, via
a collection of objectives and constraints described below.

Conformal objective As 2D mappings satisfy the Cauchy-
Riemann function when it preserves angles [Lévy et al. 2002; Chen
and Weber 2015], we define the conformal objective as:

Econf (c) = max
x

(

(

∂u

∂x
−

∂v

∂y

)

2

+

(

∂u

∂y
+

∂v

∂x

)

2
)

. (3)

We then minimize this energy (i.e., a minimax formulation) to
maintain smooth energy distribution without extra regularization.

Distance constraint Unlike a global isometric mapping which
requires ∂u

∂x
= ∂v

∂y
= 1, our mapping only needs to be locally

isometric, which requires its Jacobians J to satisfy JTJ = 1, i.e.,

(

∂u

∂x

)

2

+

(

∂v

∂x

)

2

= 1

(

∂u

∂y

)

2

+

(

∂v

∂y

)

2

= 1

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
= 0.

(4)

Since local isometry maps geodesics to geodesics [Gray 1996], it
suffices for VR locomotion. Note that minimizing Econf in Equa-
tion (3) also addresses the last term in Equation (4), so we only need
to focus on the first two terms.

Analogous to feature-aware texturing [Gal et al. 2006], different
virtual regions may need different amounts of distance preservation
in VR applications. For example, distances near region boundaries
should be more strictly preserved as the users can examine the vir-
tual walls close by, than when the users are in the middle of a large
empty space. Due to this practical consideration, instead of putting
the first two terms in Equation (4) as objective functions, we treat
them as bounded constraints for more flexible control:

α(x) <

(

∂u

∂x

)

2

+

(

∂v

∂x

)

2

< β(x)

α(x) <

(

∂u

∂y

)

2

+

(

∂v

∂y

)

2

< β(x),

(5)

where α ∈ [0, 1] and β ∈ [1,+∞) are stretching ranges for each
virtual scene point x. When both α and β equal to 1, the map-
ping is strictly locally isometric. However, for better conformality,
we can relax the isometry into a range: the lower/higher the α/β
value is, the more shrinking/stretching is allowed. There are three
ways to set those parameters: constant values, user specification, or
automatically computed via RANSAC line detection over Sv .

Exterior boundary constraint To keep all u inside the real space
Sr , we construct the polygonal convex hull of Sr as a set of straight
line functions {Bi}, and add a series of linear constraints:

(Biu)
T (BiCr) > 0, (6)

where Cr is the center of the physical space. The idea is to keep u

and Cr on the same side of each Bi for testing point inclusion.

Figure 4: Energy distribution of the obstacle barrier in Equation (7) over

a reconstructed real indoor scene from [Choi et al. 2015]. Notice the higher

energies in obstacle areas as indicated by brighter colors.

Interior obstacle barrier Preventing users from hitting interior
obstacles can be formulated as the opposite of the point inclusion
test in Equation (6). However, such formulation will require the
calculation of directed areas or angles and solving a large quadratic
instead of linear constraint system. For faster computation, we in-
stead use a 2D Gaussian based barrier function for each interior
object. For each object, we fit a minimal-covering 2D ellipse area
E(uc, Ew, Eh, θc), where uc is the center, Ew and Eh are width
and height, θc is the rotation angle. Based on the scale of the ellipse,
we define a Gaussian-based barrier:

Eb (E(uc, Ew, Eh, θc),u) = exp

(

−1

2σ2

(

u′2

E2
w

+
v′

2

E2

h

))

, (7)



where

u
′ =

(

u

[

cos θc sin θc
− sin θc cos θc

]

− uc

)

. (8)

In our experiment, we set σ2 = 0.2. Figure 4 depicts an example.

(a) no local bijection (b) with local bijection (c) virtual view

Figure 5: Local bijection. Without local bijection, local fold-over in the

static mapping may block the whole path with a wall (a). Adding the local

bijection constraint can help prevent this artifact (b). (c) shows the original

virtual scene for comparison.

Local bijectivity Our mapping f allows global surjectivity to fold
large Sv into small Sr . However, a local fold-over may produce
visible artifacts, as exemplified in Figure 5. To prevent such fold-
overs, we add a local bijectivity control, as described below.

From [Schüller et al. 2013], a mapping at a given point x ∈ Sv is
locally bijective (i.e., no fold-overs) when it satisfies:

det(Ju(x)) > 0. (9)

Directly applying this constraint to all points in Sv can be computa-
tionally expensive. More efficient barrier functions and optimizers
[Schüller et al. 2013] require sparse objective functions, whereas
our objective function is dense. The method in [Poranne and Lip-
man 2014] can express Equation (9) as eigenvalues over all points,
but such constraints cannot improve performance in our non-convex
quadratic constraint problem.

To address this performance issue, we add local bijective con-
straints in a coarse-to-fine process. At the beginning, we partition
Sv into a collection of cells (Figure 3). Then, during optimization,
we add the following constraints to each sample point x ∈ Sv:

det (Ju(x)) =
∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u
> 0. (10)

Figure 6: Local bijection sampling. When fold-over is detected in the

orange area, we restart the optimization, split all sample grids and add

more samples. Distance constraints are then relaxed in the folding area.

After convergence, if we find fold-over inside any cell, we itera-
tively split all cells into four smaller ones and add one more sample
for each. We split all cells instead of only those in the fold-overs for
faster convergence. Specifically, in our experiments we have found
that up-sampling only the fold-over areas tends to push fold-overs
to other areas with original sampling, which will require even more
optimization rounds to fix than up-sampling all cells. Compared
with active-set methods used in [Poranne and Lipman 2014], the
coarse-to-fine process is more stable for a non-convex problem.

Relaxed distance constraint To facilitate local bijectivity, we
relax the distance constraints in Equation (5) to encourage stretch-
ing over folding. Here, imagine the virtual domain is a plastic floor
plan sheet that can be bent or fold, but never cut. Intuitively, bend-
ing will cause point-wise stretching but folding will not. Thus, to
encourage bending over folding, we maintain an extra point set L
from those samples in a folding area, i.e., the red points in Figure 6.
We increase the upper limit of Equation (5) for all points in L to
encourage stretching:

(

∂x

∂u

)

2

+

(

∂y

∂u

)

2

< β(x) →

(

∂x

∂u

)

2

+

(

∂y

∂u

)

2

< λβ(x)

(

∂x

∂v

)

2

+

(

∂y

∂v

)

2

< β(x) →

(

∂x

∂v

)

2

+

(

∂y

∂v

)

2

< λβ(x).

(11)

We set λ = 1.2 in our experiments.

Solver The local isometric requirement in Equation (5) makes the
terms quadratic and thus cannot be directly solved via the SOCP
methods as in [Poranne and Lipman 2014; Chen and Weber 2015].
With the combined conformal objective and various constraints
and requirements, the problem becomes a quadratically constrained
quadratic programming (QCQP) in a minmax format. However,
due to the dual-bounded constraints Equations (4) and (5), the con-
straints are not convex and thus not suitable for QCQP solvers.

To address this large, dense, and non-linear optimization problem,
we adopt an interior-point method [Bonnans et al. 2006]. In or-
der to match the solver format, we rewrite the conformal objective
Equation (3) as follows:

min z, s.t.

(

∂u

∂x
−

∂v

∂y

)

2

+

(

∂u

∂y
+

∂v

∂x

)

2

< z. (12)

Combining all those constraints and barriers we discussed above,
the final static mapping problem to be solved by interior-point
method becomes:

min z + woEb(E,u), (13)

where wo is the weight for obstacle barrier function, which we set
as 600. We initialize {ci} and T in Equation (1) as zeros and an
identity matrix to satisfy Equations (5), (6) and (10) to (12).

3.2 Dynamic Inverse Mapping

The static map in Section 3.1 forwards positions from the virtual
world Sv to the real world Sr . However, for VR walkthroughs we
need the reverse map, from the current user position in Sr to Sv .
This reverse map needs to deal with the fact that the forward map
might not be bijective and thus there can be multiple solutions. In
addition, it should also minimizes perceptual angle and distance
distortion during navigation. Below, we describe how we compute
this inverse map dynamically during user navigation.

Start Given the user positions u(t) and u(t + 1) as well as ori-
entations U(t) and U(t + 1) tracked in the real world Sr at time
steps t and t + 1, and the corresponding virtual position x(t) and
orientation X(t) at time t, our goal is to compute the corresponding
virtual position x(t+1) and orientation X(t+1). Note that this is
a path dependent process as x(t + 1) and X(t + 1) are computed
from x(t), X(t), u(t+1), and U(t+1). We manually assign x(0)
and X(0) for the initial virtual world position and orientation.



Direction update To compute x(t + 1), we first compute the
moving direction:

δ̂x(t) =
x(t+ 1)− x(t)

‖x(t+ 1)− x(t)‖
,

(

δ̂x

δ̂y

)

. (14)

The virtual and real world directions are related by the Jacobians of
their mapping:

(

δ̂x

δ̂y

)

=

(

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

)(

δ̂u

δ̂v

)

, (15)

where
(

δ̂u

δ̂v

)

= δ̂u(t) =
u(t+ 1)− u(t)

‖u(t+ 1)− u(t)‖
(16)

is the real world direction. Thus, the goal is to find the Jacoabian of
the reverse function of f in Equation (1):

Ju(x) =

[

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

]

. (17)

Even though f might not be globally bijective, the local bijectivity
(Section 3.1) satisfies the inverse function theorem [Rudin 1976]
and allows us to compute the inverse Jacobian via:

Ju(x) = J
−1

x
(u), (18)

where Jx(u) can be computed from the analytic function f at posi-
tion x(t).

Position update We next compute the new virtual position x(t+

1) based on the estimated direction δ̂x(t). We focus on the 2D x-y
position, as the z/height value of x can be directly assigned from
u after an initial correspondence. For computation purposes, we
define ∆x(t) = x(t+1)−x(t), and represent it in a polar coordi-
nate system, i.e., ∆x(t) = ∆xt(d, θ) = (d cos(θ), d sin(θ)). The
goal is to find optimized (d, θ) to minimize an energy function as
follows.

The first energy term measures how close the actual direction is to

the estimated direction δ̂x(t):

Edir(θ) =

∥

∥

∥

∥

∥

θ − arctan

(

δ̂y

δ̂x

)
∥

∥

∥

∥

∥

2

. (19)

The second term is to keep the virtual distance close to the real
distance:

Edis(d) = ‖d−∆u(t)‖2 . (20)

The last term is to match the mapping function f in Equation (1):

Emap(d, θ) = ‖f (x(t) +∆x(t))− u(t+ 1)‖2 . (21)

We find x(t+ 1) = x(t) +∆x(t) to minimize

Erev = Emap + λdirEdir + λdisEdis, (22)

where λdir and λdis are relative weights. In our experiments, we
set λdir = 0.1 and λdis = 0.05.

For fast convergence, we make the initial guess as:

θ = arctan

(

δ̂y

δ̂x

)

d = ‖∆u(t)‖ .

(23)

Orientation update For rendering, we also need to compute vir-
tual camera orientation X(t) from real camera orientation U(t),
which is tracked by the HMD. We represent both orientations by
their Euler angles:

U(t) = (yawu(t), pitchu(t), rollu(t))

X(t) = (yawx(t), pitchx(t), rollx(t)) .
(24)

Since our planar map f has only x-y positions, we compute only
yawx and simply copy pitchx and rollx from pitchu and rollu:

pitchx(t) = pitchu(t)

rollx(t) = rollu(t).
(25)

A straightforward way to compute yawx(t) is copying the opti-
mized angle θ from Equation (22). However, empirically we found
that this may cause nausea and dizziness. To explain this, the
static mapping (and thus the estimated orientation correspondence)
is non-linear. Consequently, when users rotate their heads with
uniform speed, the corresponding virtual camera may rotate non-
uniformly. We thus compute yawx as a combination of λa and
yawu to balance between accuracy and consistency:

yawx(t) = λaθ(t) + λcyawu(t)

1 = λa + λc

, (26)

where λa and λc are subjective parameters set via user evaluation,
as discussed in Section 5.1.

3.3 Rendering

B

A

C

B

A

C

virtual scene real scene

fc

Figure 7: Handling occlusion in rendering. The left and right are the

virtual and real scenes. A camera is looking down a walled path, with three

corresponding scene points shown in different colors. Point A is occluded

in the virtual camera Cv but visible (i.e., dis-occluded) in the real camera

Cr . The goal is to decide how to render this dis-occluded pixel f in Cr .

Direct rendering the real scene Gr into Cr will pick B and cause highly

occluded geometry in general (Figure 8b). The naive method improves this

problem somehow (Figure 8e), but still picks point B for f because it is

nearer the center of Cv than A. Thus, for each pixel in the dis-occluded

area such as f , we search for its nearest non-occluded pixel in Cr , which

is c in this example. We then find the corresponding scene point C of pixel

c, and assign its 3D distances to A and B in the virtual scene Gv as their

depth values. Here, since C is closer to A than B, A will be picked for f .

This strategy works because the local bijectivity of our mapping will prevent

the incorrect solution B to be closer to C than the correct solution A.

From the tracked/computed real/virtual user positions/orientations
(Section 3.2), we have the real and virtual cameras Cr =
{u(t),U(t)} and Cv = {x(t),X(t)} at each moment t. Our goal



(a) virtual camera view (b) real camera view (c) local view of (b) (d) warp + dis-occlusion (e) naive solution (f) our method

Figure 8: Rendering examples. (a): virtual camera Cv rendering Iv . (b): real camera Cr rendering Ir; notice the ghosting objects blocking most of the

views. (c): manually cropping only the relevant parts of the real scene to remove the ghosting objects in (b); this is for comparison only, not for practical use.

(d): warping Iv towards Cr with dis-occlusion areas visualized in green color. (e): naive solution for the dis-occlusion in (d) using fragment depth values

in the virtual camera Cv; however, this is also not enough. (f): our method fitting the virtual image Iv into the real camera Cr; notice the combination of

rendering in (a) and geometry in (c).

is to render the appearance of the virtual world into the environment
of the real world, so that users can perceive the former while navi-
gating in the latter. As visualized in Figures 7 and 8, direct mapping
the virtual scene geometry into the real scene via f in Equation (1)
can have overlaps and intersections and thus not suitable for ren-
dering. The original virtual scene rendering, however, cannot be
used for direct navigation as it would cause motion sickness due
to incompatibility with the real scene. We thus fit the rendering of
the virtual world into the geometry of the real world, as discussed
below.

Algorithm We first render the virtual image Iv with virtual scene
geometry Gv and virtual camera Cv . We then initialize the real im-
age Ir by mapping/warping [McMillan 1997] Iv into Cr via f to
maintain visibility consistency with Iv . Parts of Ir might remain
uncovered due to dis-occlusion, for which we perform another ren-
dering pass via the real scene geometry Gr and camera Cr .

Note that it is important to warp the original virtual image Iv into
Ir first, followed by rendering Gr only into the uncovered portions
of Ir . Otherwise, parts of Gr may erroneously occlude points in
Iv that should remain visible in Ir , as demonstrated in Figure 8b.
For the dis-occluded parts in Ir , simply rendering Gr via Cr will
show artifacts in Figure 8b in these dis-occluded regions. A naive
method that partially improves the outcome is to use depth values
in the virtual camera Cv instead of the real camera Cr . However,
this is still not enough, as demonstrated in Figure 8e. Thus, we
propose a more accurate method for dis-occlusion areas as follows.
For each fragment (xy pixel + z depth) fr visible in Ir but not in
Iv (i.e., in dis-occlusion areas), we find the nearest (in terms of
2D xy coordinates) fragment fv visible (i.e., non-occluded) in Ir .
We then assign the 3D Euclidean distance between fv and fr (in
Cv space) as the depth value to fr for rendering in Cr . Figure 7
illustrates an example. Intuitively, this strategy works because the
local bijection in Section 3.1 prevents overlapping among nearby
virtual scene points. Notice the geometric similarity between the
local real scene in Figure 8c and our result in Figure 8f.

Implementation Our rendering algorithm is amenable for GPU
implementation. We first render the virtual image Iv (via polygon

rasterization) of the virtual geometry Gv into virtual camera Cv .
For each pixel/fragment, we record the usual color and depth, as
well as the optional G-buffer parameters [Crassin et al. 2015] for re-
shading non-Lambertian materials. We then forward warp [McMil-
lan 1997; Yang et al. 2011] Iv into Cr to initialize Ir (and option-
ally re-render non-Lambertian fragments), and record the coverage
via a stencil buffer. If Ir is not entirely covered, we render Gr via
Cr culled by the stencil buffer.

Because it is computationally complex to do reverse projection of
Iv as f is a transcendental function, we store the 3D position of a
real rendered pixel as a texture coordinate.

Similar to standard game level design, we surround the scene with
an environment-map box to ensure all pixels in Iv are initially cov-
ered. Thus, all uncovered pixels in forward-warped Ir are caused
by dis-occlusion. The environment map is important to ensure
robust dis-occlusion to prevent far-away objects being mistakenly
rendered into the background, as exemplified in Figure 9.

For more robust handling of larger/more-complex dis-occlusions,
for each dis-occluded fragment fr we find its four instead of just
one nearest visible fragment, as described above. Specifically, we
find the nearest non-occluded pixel ci, i ∈ [1, 4] visible (i.e., non-
occluded) along each image domain direction (±x and ±y) in Ir .
Each of them has 2D distance di to fr and corresponding scene
position Ci. We then estimate the hypothetical matching point C
(as in Figure 7) by:

C =

∑

4

i=1
d−1

i Ci
∑

4

j=1
d−1

j

. (27)

To improve quality, we follow the standard IBR tricks [Debevec
et al. 1996] of rendering multiple images with different camera pa-
rameters for Gr , and blend all fragments with the same screen po-
sition and depth (within numerical precision range) with weights
proportional to their quality. For example, fragments with normal
directions closer to the camera ray will have higher weights.

The camera Cr might go beyond the field of view of the original
camera Cv . We thus render Iv into a cylinder or 6 sides of a cube to
ensure sufficient coverage. For efficiency, we estimate and render



(a) virtual camera view (b) real camera view

(c) without environment map (d) with environment map

Figure 9: Importance of the environment map, a sky blue background in

this example. (a): rendered from the virtual camera view. (b): rendered

from the real camera view. (c): our method without using environment map;

notice the ugly artifacts in the sky. (d): our method with environment map;

the sky becomes clear, similar to (b).

only the needed subset of Iv from Cv and Cr , which includes the
relevant cube faces stenciled with the necessary portions.

Discussion Conceptually, the mapping f in Equation (1) can
have a meta parameter w that morphs the scene [Turk and O’Brien
2005]: f0 maps to the virtual scene G(0) = Gv , f1 maps to the
real scene G(1) = Gr , and fw with w ∈ (0 1) maps to a scene in-
between G(w). The w parameter trades off between visual fidelity
to the virtual image I(0) = Iv and motion fidelity to the real scene
G(1) = Gr . Figure 10 compares renderings with different mixing
weights.

4 Implementation

Hardware As shown in Figure 1c, our experiments run in a
5m × 10m room with 24 OptiTrack motion capture cameras in-
stalled along the floor and ceiling edges, and a rectangular desk in
the middle of the room serving as an obstacle. We attach a rigid
body OptiTrack tracker on top of an Oculus DK2 HMD, which is
connected to and driven by a laptop with Intel i7-5700HQ CPU,
NVIDIA GTX980m GPU, and solid-state drive. A light-weighted
uninterruptible power supply in a backpack provides power to the
HMD. During user movement, the position u is streamed from
the motion capture system, and the orientation U is returned from
Oculus HMD orientation sensor. We use a hybrid VR framework
[Febretti et al. 2014] to drive all hardware and synchronize signals.

The Oculus HMD supports two types of rendering: a pair of iden-
tical binocular images or a pair of different monocular images with
disparity. We choose the former for all images shown in the paper

and the main video, and the latter for additional video segments.

Reachable area extraction To optimize space usage and com-
putation speed, we only consider a subset of the virtual space Sv

during offline optimization (Section 3.1) and online walkthrough
(Section 3.2). This set should be reachable with a navigation start-
ing from the initial virtual position. Thus, we perform a flood fill
method over the virtual scene with root as x(0). All covered reach-
able regions serve as the input domain of the static mapping func-
tion f .

5 Evaluation

We have evaluated subjective and objective aspects of our system
pipeline via various experiments. We have recruited 7 participants
with ages between 25 and 31. Among these participants, one par-
ticipant has no prior experience with HMDs, six others have at least
some basic knowledge or experiences with HMDs. One of the par-
ticipants suffered from a light degree of vertigo.

5.1 Subjective Parameters

Design In addition to objective parameters which are empirically
set based on scene properties, we also have to evaluate two subjec-
tive parameters, w in Section 3.3 and λa

λc
in Section 3.2. Due to

limited human sensitivity to small parameter differences, we evalu-
ate ranges instead of individual values. For w, we uniformly split its
valid range [0, 1] into 3 subranges. For λa

λc
, values lower than 0.6

may cause significant mismatch between virtual and real camera
orientations, triggering large dis-occlusions and rendering artifacts
(Figure 14). We thus chose the [0.6, 1] range and uniformly split it
into 4 sub-ranges. For all experiments, each participant was tested
with a random value sampled from each sub-range.

For w, we asked the participants to follow paths inside the virtual
office scene (Figure 10) which are mapped to the physical lab scene
with both boundaries and obstacles. Intuitively, larger w values
will favor locomotion over visual fidelity, and w that is too small
can cause motion sickness. We asked the participants to choose
the most favorite w value to balance between visual and locomo-
tion fidelity. Because people are more sensitive to locomotion dis-
comfort, the participants were evaluated with high to low w values
until feeling uncomfortable. Since λa

λc
is for orientation, we asked

the participants to remain stationary, rotate their heads, and choose
which values provide the most natural experience.

Result For w, 6 participants chose values within the 33% to 66%
range as their preferences. One of those 6 users reported unbearable
locomotion experience when w lies in 0 to 33%. The user with 3D
vertigo reported light but bearable dizziness during this range and
prefers the 66% to 100% range instead.

For λa

λc
, all participants reported visual discomfort when the value is

lower than 0.7. Among all participants, 1 chose [0.7, 0.8] while the
others chose [0.8, 0.9]. They reported that the proper values should
be position-sensitive, i.e., the level of mismatch between real and
virtual scenes caused by f .

We observed that participants did not rotate their head much during
the w experiments. As a result, they did not detect strong incon-
sistency when λc is low until they were asked to do the rotation
experiment.

5.2 VR Usability

Design Similar to other VR applications [Bowman et al. 2002],
we have conducted a formative user study to evaluate the usability



(a) w = 0% (b) w = 33% (c) w = 66% (d) w = 100%

Figure 10: Comparison of different virtual-real mixing weights w in rendering. (Scene courtesy of Counter Strike, Italy (top) and office (bottom).)

of our VR system. We chose the task-based method to evaluate
locomotion and the post-interview-based method to evaluate visual
fidelity and motion sickness. All subjective parameters in this study
session are taken from users’ choices described in Section 5.1.

For this experiment, we chose the Counter Strike office scene (Fig-
ure 11b) as it has simple and uniform paths for task-based studies.
We picked the purple vending machine at one end of the scene as
the goal object. This particular object is unique in the scene and far
from the entrance door, and thus suitable for a search task. With-
out prior knowledge of the scene, the participants started free lo-
comotion to find the target. During the experiment, if a participant
hits any real world objects or feels sick, we stopped the experi-
ment. To evaluate locomotion fidelity, the participants can click a
counter whenever they feel lost. To evaluate visual fidelity, the par-
ticipants were given the original virtual scene to explore and grade
for similarity at the end of the experiments. At the closing interview
session, the participants shared their comments with us and graded
their sickness and fatigue levels.

Result For the search task, 2 participants had a failure experi-
ence. One was caused by wall crossing; since our current pipeline
does not implement collision detection, when users cross a wall our
algorithm will get stuck by regarding all pixels as dis-occlusion.
Another failure case was caused by the particular user passing-
by the vending machine without noticing it until being explicitly
prompted. No participant hit any real world objects.

For locomotion fidelity, no direction loss was reported.

For motion sickness, we have conducted the simulator sickness
questionnaire (SSQ) [Kennedy et al. 1993] at the end of the exper-
iments. Compared to prior literature, such as [Schild et al. 2012]
for gaming environments, our overall numbers as shown in Table 1
are in a comfortable range. Specifically, one user reported bearable

fatigue after the w experiment. Two users (one with VR experience
and another without) reported dizziness right after the first experi-
ment, but they recovered and felt comfortable for the remaining two
experiments.

❵
❵

❵
❵

❵
❵
❵
❵
❵❵

measure

participants
1 2 3 4 5 6 7

nausea (out of 27) 5 8 6 1 0 0 0

oculomotor (out of 21) 5 6 4 1 1 1 0

Table 1: SSQ results using the questionnaire from [Bouchard et al. 2007].

For visual fidelity, one participant graded 90 (out of 100), five
graded 80, and one graded 40. The reason for this latter low grade
is that the participant is more sensitive to corner angles. Since our
algorithm warps the virtual scene, global angle (not local confor-
mality) might change significantly.

For additional interview comments, the participant without VR ex-
perience was excited about the walkthrough experience. Another
participant expressed concerns about highly bended angles, which
may cause users fatigue and discomfort after sustained usage.

5.3 Performance

Static forward mapping Since the static mapping is a pre-
processing step, there is no need for real-time or interactive perfor-
mance. However, as shown in Table 2, without our Gaussian-based
obstacle barrier function, the optimization will be impractical for
real spaces with obstacles.

Dynamic inverse mapping The inverse mapping part is usually
very fast with speed mainly depends on the complexity of f . For
example, the office scene with the largest number of basis func-



tions (Table 3) has FPS ranging from 160 to 240 based on users’
movement speed.

Rendering Table 3 provides performance measurements and
scene statistics. The frame rate is between interactive (30 FPS) and
real-time (60 FPS), and the rendering cost depends much more on
the image resolution (1182 × 1461 per eye) than geometry details
due to our use of image warping.

6 Applications

Our method can be applied for various VR applications, such as
gaming/entertainment, architecture/design walkthrough, and medi-
cal imaging/visualization.

First person shooting games, such as Counter Strike, have been a
main target for VR designers. We have applied our method to two
different scenes in Counter Strike: the Italy scene for outdoor views
and the office scene for indoor views, as shown in Figures 11a
and 11b. The corresponding results in Figures 1 and 10 and the
accompanying video show the promise of our method for navigat-
ing first person shooter games while moving in a real room using
HMD.

Virtual architectural walkthroughs provide immersive experience
for design and education. Figure 11c displays a portion of the
Venice city 3D model, with our rendering result shown in Fig-
ure 12a. Using our system, users can virtually walk to every corner
of the city while staying in their homes.

Modern virtual reality techniques have been introduced in medical
imaging with clinical use. As a representative application, virtual
colonoscopy is a non-invasive computer-aided 3D medical imaging
technology to replace traditional optical colonoscopy [Hong et al.
1997]. To make radiologists feel being inside a human colon while
having realistic navigation experience, we straighten a folded colon
for 2D navigation Figure 11d. A sample rendering by our system
can be seen in Figure 12b.

7 Limitations and Future Work

We have presented a method to support real walking within a given
physical environment, while perceiving a given virtual world inside
an HMD for VR applications. Our system focuses on the graphics
aspects: 2D mapping and 3D rendering to balance between visual
fidelity to the virtual world and locomotion comfort for the phys-
ical world. These graphics algorithms depend on but are largely
orthogonal and complementary to a collection of perceptual and
physiological parameters, for which we have performed a prelim-
inary study but are definitely worth more thorough investigation.

P
P

P
P

P
P

virtual

real no obstacle 60×100 with obstacle

60×100 70×70 barrier constraint

Italy 406.8s 487.9s 928.7s >3h

Office 282.6s 214.3s 444.7s >3h

Venice 75.6s 61.6s 340.7s >3h

Colonoscopy 22.4s 35.0s 203.0s 35m

Table 2: Performance measurement for static mapping. Note the faster

performance of barriers than of constraints for interior obstacles.

P
P

P
P

P
P

scene

info
# vertices # triangles # basis FPS

Italy 11018 21038 143 49.7

Office 11752 22249 165 50.4

Venice 6492 8431 154 44.2

Colonoscopy 5094 10108 48 40.5

Table 3: Performance measurement for rendering.

(a) Counter Strike, Italy scene (b) Counter Strike, office scene

(c) Venice scene (d) virtual colonoscopy

Figure 11: External views of all scenes used. (a) and (b) are from Counter

Strike game level data, (c) is freely available from http:// tf3dm.com/ , and

(d) is from our in-house anonymous patient database.

Some specific evaluations and extensions including a larger scale
user study as well as the incorporation of physics laws and tactile
interaction [Cheng et al. 2015] are planned.

Our current method is designed for mapping 2D floor plans. It can
be used to navigate scenes with height variations by tracking user
head elevation and add it over the virtual scene height value for
rendering. This can work if the users actively change their body
postures such as jumping or crouching, but they might not sense
the proper motion with plain walking up a ramp.

Although our static mapping solver can estimate a constraint-
satisfying solution for any given pair of virtual and real spaces, the
quality depends on their shape and size differences. When their
sizes differ substantially, the mapped virtual space may be strongly

(a) Venice scene (b) virtual colonoscopy

Figure 12: Sample HMD rendering for the Venice scene and virtual

colonoscopy. The corresponding results for the Italy and office scenes can

be found in Figures 1 and 10.

http://tf3dm.com/


distorted, reducing both visual and locomotion fidelity to the users.
On the other hand, similar virtual and physical worlds can certainly
improve the output quality of our system. Please refer to Figure 13
for comparisons.

(a) small (b) medium (c) large

Figure 13: Differences in size/shape between the virtual and real spaces.

Our method can compute static mapping between a given pair of virtual and

real scenes, but the quality depends on their size/shape differences. The red

rectangles indicate the extents of the real spaces.

Large open virtual spaces cannot be folded into a small real space
without being noticed by the users. Space manipulation mecha-
nisms such as teleportation might help and are worth further study.
Fortunately, many virtual scenes in popular VR applications such
as gaming, architecture, and medical imaging are highly occluded,
and thus can benefit from our method.

In some cases, narrow virtual pathways can become even narrower
than regular human footsteps after the static mapping. This, com-
bined with motion capture accuracy limit, can cause our estimated
∆x to cross walls and obstacles.

Our rendering algorithm cannot handle a large area that is entirely
dis-occluded and also has very different depth from the surrounding
regions, as shown in Figure 14. In particular, our dis-occlusion han-
dling method, as depicted in Figure 7, requires parts of the nearby
geometry to be visible for a dis-occluded fragment. Our experi-
ments and analysis indicated that these dis-occlusion artifacts can
be resolved by using more virtual images. Exactly how many ad-
ditional virtual cameras are necessary, and where to place them,
remain future research problems.

(a) dis-occlusion area (b) artifacts

Figure 14: Limitation in our rendering algorithm. (a) shows an entire

dis-occluded area in green color, which has vastly different depth from the

surrounding rendered areas as shown in (b), which circles the rendering

artifact in red.

During the initial phase of the project, we have explored the use
of non-pinhole cameras [Cui et al. 2010; Popescu et al. 2009] for
rendering, but settled for traditional pinhole projection due to per-
ceptual and performance reasons. In particular, pinhole projection
is faster to render, and causes less motion disorientation for VR
walkthroughs. However, a limited amount of non-linear projection

is still worth further investigation to better balance between render-
ing and perception.
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I., THÜMMEL, T., ULBRICH, H., LUCA, A. D., BÜLTHOFF,
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